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Abstract: We study the Z2 lattice gauge theory in three dimensions, and present high

precision estimates for the first few energy levels of the string spectrum. These results are

obtained from new numerical data for the two-point Polyakov loop correlation function,

which is measured in the 3d Ising spin system using duality. This allows us to perform a

stringent comparison with the predictions of effective string models. We find a remarkable

agreement between the numerical estimates and the Nambu-Goto predictions for the energy

gaps at intermediate and large distances. The precision of our data allows to distinguish

clearly between the predictions of the full Nambu-Goto action and the simple free string

model up to an interquark distance r ≈ 10/
√

σ. At the same time, our results also confirm

the breakdown of the effective picture at short distances, supporting the hypothesis that

terms which are not taken into account in the usual Nambu-Goto string formulation yield a

non-trivial shift to the energy levels. Furthermore, we discuss the theoretical implications

of these results.
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1. Introduction

Understanding in detail the mechanisms which govern the behaviour of physical observables

in the confinement phase of quantum gauge theories is still a challenge. Even the simplest

confined system — a heavy quark-antiquark pair in a pure gauge model without dynamical

matter fields — is a setting where a number of interesting aspects become manifest; the

potential associated with such a system is asymptotically linearly rising at large interquark

distances, whereas at finite distance it develops non-trivial corrections, which are expected

to be predicted by some kind of effective theory.

The idea that the confining flux lines joining the two colour sources get squeezed in a

thin tube explains that at asymptotically large distances the potential energy of the system

is proportional to the quark-antiquark distance r. Assuming that the tube vibrates along

the transverse directions, one can derive effective string corrections affecting the potential

V (r) for finite values of r. This infrared picture breaks down as r approaches 1/m from

above, where m is the mass of the lightest glueball. At these small distances, glueball

radiation has to be taken into account, leading to effects that cannot be described by the

effective string model and which are specific to the given gauge model.

The theoretical background of the effective string in this setting is well-known: the

pioneering works by Lüscher, Münster, Symanzik and Weisz [1 – 3] date back to the Eighties,

and over the last decades considerable progress has been achieved in understanding the

details of the picture [4 – 12].

These theoretical predictions can be confronted with data obtained from lattice gauge

theory: One can check the extent to which the theoretical expectations actually match the

results of Monte Carlo simulations for a wide range of parameters and for different types of

gauge theories, in particular simpler prototype models for confinement than QCD [13 – 23].
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The aim of this work is to study numerically the fine details in the behaviour of the

excitation energies En(r) which contribute to the partition function Z(r, L) describing

the confined quark-antiquark (QQ̄) system in euclidean space-time with a compactified

direction of size L:

ZQQ̄(r, L) =

∞
∑

n=0

wne−En(r)L (1.1)

where wn is the multiplicity factor associated with the energy level En. Neglecting glueball

radiation,1 such a partition function is proportional to the two-point correlation function

among Polyakov lines G(r), which can be evaluated in numerical simulations.

Here, we focus our attention onto the results obtained from the confining phase of Z2

lattice gauge theory in three dimensions: a model whose properties (remarkably, its duality

with respect to the Ising spin model) are well-known, and allow to reach high precision

in the determination of the interquark potential, even for large values of the interquark

distance r, or of the lattice size in the time-like direction L. This in turn allows very

stringent comparisons with the existing theoretical descriptions and in particular with the

effective string models which we shall discuss below. In particular in this paper we will

concentrate on the study of the behaviour of the first few energy levels En as a function of

the interquark distance r. We will compare our numerical data with the predictions of both

the Nambu-Goto (NG) model and its free string limit. Although these two models give

very similar results, the precision of our numerical simulation is sufficient to distinguish

between them. We shall see that while the lowest state E0 shows deviations from the

effective string prediction even for rather large distances (as already pointed out in several

papers) the energy gap E1 − E0 clearly approaches the prediction of the Nambu-Goto

effective string model as the distance increases. This suggests that the breakdown of the

effective string model is due to additional contributions at short distances which lead to an

overall shift on the effective string spectrum. In addition to gauge model specific effects,

such as glueball radiation, such a contribution might be due to the so-called Liouville

mode, which is neglected in deriving the effective string model predictions from the original

reparametrisation-invariant string action.

Let us finally mention that other studies of the excited states of the spectrum for

a static quark-antiquark pair have been done in recent years, both in the Ising model

and in other LGT’s [18 – 23], but they used different numerical techniques and did not

reach distances large enough to appreciate the effects that we discuss in this paper. The

novelty of our approach is that, by suitably combining the results of our simulations for

all intermediate values or the interquark distance, we were able to directly evaluate the

partition function of the model eq. (1.1). From it, by fitting its functional dependence on

the energy levels — see the right-hand side of eq. (1.1) — for different values of r and L

we could extract high precision estimates of the first few energy levels.

This paper is organised as follows. In section 2 we will recall some basic theoretical

ideas underlying the effective description of the interquark potential, focusing our attention

1At large r, the glueball threshold is indeed far from the lowest-lying energy states, whereas at short

distances this is no longer true — see subsection 4.2 and table 2.
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onto the bosonic string models that are expected to mimic its large distance behaviour; in

particular, we will discuss the Nambu-Goto string and its free string limit. In section 3,

after reviewing the basic properties of the Z2 lattice gauge theory in D = 3, we will present

the features of our simulation algorithm. Then, in section 4 we will show the numerical

results; the latter will be discussed in section 5, in a comparison with similar studies; finally,

we will conclude with a few remarks.

2. Theory

A quantitative description of the QQ̄ potential in confining gauge theories — see [24] and

references therein for a review — can be formulated in terms of effective models, which are

expected to provide phenomenologically consistent predictions for the behaviour of V (r)

in the regime of interquark distances typical of the hadronic world.

At large enough interquark distances, the region of the perturbative vacuum among

two heavy sources gets “stretched” into a vortex-like configuration, whose excitations cor-

respond to string-like modes: this is the scenario underlying the renowned effective string

picture for confinement in the IR [1 – 3], based on the idea that the flux lines among the

sources in a pure gauge theory get squeezed in a thin, almost uni-dimensional tube. As

a consequence, the asymptotic behaviour of the potential is a linear rise. Remarkably

enough, according to this picture, in principle one can obtain physical information about

the confined system without knowing the dynamics of the microscopic degrees of freedom

and the details of the gauge group.

In the following of this paper, we focus on sufficiently large interquark distances, where

the effective string picture holds, and try to identify the string model which yields predic-

tions that match best with our numerical results for the energy spectrum.

At finite distances, the leading correction to the linear interquark potential predicted

by the effective string model is a Casimir effect due to the (harmonic) oscillations that

can set in the finite-size string with fixed ends: they induce a 1/r contribution to the IR

interquark potential:

V (r) = σr + µ − π(D − 2)

24r
+ O

(

1

r2

)

(2.1)

where D is the number of space-time dimensions, σ is the string tension, and µ is a constant.

The 1/r term in eq. (2.1) is known as the “Lüscher term”: it can be predicted under

the assumption that, at leading order, the string fluctuations along the D − 2 transverse

directions are described by free, massless boson fields, and its numerical coefficient can also

be obtained via CFT arguments.

According to this “free string” picture, the excitation spectrum is expected to be simply

described as a tower of equally-spaced levels labelled by a non-negative integer n:

En = E0 +
π

r
n (2.2)

and, in general, degeneracies are expected for n ≥ 1.

– 3 –
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The prediction for V (r) in eq. (2.1) can be refined, making more precise assumptions

about the dynamics describing string vibrations: more precisely, the partition function

Z(r, L) associated to the QQ̄ sector of the gauge theory (which approximates the Polyakov

loop two-point correlation function G(r)) can be expressed as a string partition function:

G(r) = 〈P †(r)P (0)〉 =

∫

[Dh] e−Seff (2.3)

where Seff denotes the effective action for the world sheet spanned by the string. In eq. (2.3),

the functional integration is done over world sheet configurations which have fixed bound-

ary conditions along the space-like direction, and periodic boundary conditions along the

compactified, time-like direction — the Polyakov lines being the fixed boundary of the

string world sheet. In general, the effective string action Seff describing string dynamics

also encodes string interactions.

A particular choice for Seff is to assume that it is proportional to the area spanned by

the string world sheet:

Seff = σ ·
∫

d2ξ
√

det gαβ (2.4)

which is the Nambu-Goto action [25 – 27].

The Nambu-Goto model can be quantised along two almost equivalent ways:

a] Fix the reparametrisation and Weyl invariance of eq. (2.4) using the so-called physical

gauge (see for instance [4, 7]) in which the longitudinal degrees of freedom of the string

are identified with the coordinates of the plane in which the two Polyakov loops lie.

This gauge choice is anomalous (unless D = 26) [28]: the anomaly manifests itself as a

breaking of Lorentz invariance, but it can be shown that the anomalous contribution is

a rapidly decreasing function of the interquark distance [9]. The effective string model

is the quantum field theory which one obtains by simply neglecting this anomaly. The

obvious implication of this assumption is that the effective string theory predictions

are bound to hold only for large enough interquark distances. The critical distance

below which the picture is no longer valid cannot be deduced from the theory. It can

only be obtained numerically by comparing prediction and simulations. In the limit

in which the anomaly can be neglected it is possible to proceed to formal quantisation

of the resulting action [4, 7] — which has now been reduced to an ordinary QFT of

the transverse degrees of freedom only, interacting via a square-root-type potential.

The spectrum obtained in this way is:

En(r) = σr

√

1 +
2π

σr2

(

n − D − 2

24

)

, n ∈ N (2.5)

and the wn’s — i.e. the multiplicity factors which appear in eq. (1.1) — are given by:

wn =
n

∑

i1=0

. . .
n

∑

iD−2=0

[

P (i1) . . . P (iD−2) δn,i1+...+iD−2

]

(2.6)
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where P (i) denotes the number of partitions of i. In particular, in three space-time

dimensions, the wn coefficients are simply the partitions of n, and we end up with

the following expression for the effective string partition function:

ZQQ̄(r, L) =

∞
∑

n=0

P (n)e−En(r)L (2.7)

b] Alternatively, one could use the reparametrisation invariance to reach the conformal

gauge (where the NG action is equivalent to the free string action) and then quantize

it using the so-called covariant quantisation [29, 30] in the background of two “zero

branes”, which play the role of the Polyakov loops. In this framework, the anomaly

shows up with the appearance of an additional field (the so-called “Liouville mode”).

If one assumes, as above, that at large distance this mode can be neglected, then one

can quantize the string as it is usually done for the critical bosonic string, and re-

obtain all the previous results [31]. In particular, one exactly finds the Nambu-Goto

spectrum of eq. (2.5). The major advantage of the latter procedure is that it makes

the role of the Liouville mode explicit, and it could in principle offer a clue to guess

its contribution to the effective string prediction at shorter interquark distances.

One should stress that the Nambu-Goto action is by no reason the only possible choice for

the effective string action. It is the simplest choice and has a nice geometrical interpretation.

Thus in these last years much effort has been devoted to the construction of alternative

string actions. Among these a particularly interesting proposal appeared a few years ago

in [11]. We shall not further discuss this proposal in the present paper, we only mention here

that it can be shown that the first two perturbative orders in the string tension expansion

of this effective string coincide with the Nambu-Goto ones [32] and thus, at least at low

temperature and large distance, the two effective strings should follow the same behaviour.

3. General setting and the algorithm

In this paper, we restrict our attention to the Z2 lattice gauge theory in D = 3: the

dynamics of the Uµ(x) bond variables (taking values in Z2) is expressed by the standard

Wilson action:

S = −β
∑

2

U2 , U2 =
∏

l∈∂2

Ul (3.1)

For values of the coupling β below a critical value βc = 0.76141346(6) [33], the system

is in the confinement phase, whereas for β > βc the system is deconfined; the deconfinement

transition at β = βc is a second-order one. This model also possesses an (infinite-order)

“roughening transition” at βr = 0.47542(1) [34] (in the confined phase), which separates

the strong coupling regime (for β < βr) from the so-called “rough phase” (for βr < β < βc).

This model is related to the Ising spin model in D = 3 by an exact duality mapping

à la Kramers and Wannier: a Z2 Fourier transform on the plaquette variables U2 maps

the partition function of the gauge model to the partition function of the spin system,

– 5 –
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evaluated at a different coupling:

Zgauge(β) ∝ Zspin(β̃) , with: β̃ = −1
2 log [tanh(β)] (3.2)

and analogous relations hold for other observables; in particular, it is interesting to see

that the Z2 gauge theory glueballs can be interpreted in terms of bound states of the

fundamental scalar in the spin model [35].

In the case of our interest, adding external source terms for the gauge model (for

instance, a pair of Polyakov loops) amounts to introducing sets of topological defects in

the spin system. As a result, the partition function associated with the QQ̄ gauge system

on the left-hand side of eq. (1.1) is proportional to the partition function of the spin system

with anti-ferromagnetic coupling on a set of links, namely:

Z
spin,QQ̄(r, L) =

∑

{si}

exp



β̃
∑

〈i,j〉

J〈i,j〉sisj



 (3.3)

where
∑

{si}
denotes the sum over spin configurations, the i and j indices denote lattice

sites, and the si spin variables interact with their nearest-neighbours only. The value of

the J〈i,j〉 coupling is +1 everywhere, except on a set of bonds, which pierce a surface (in

the direct lattice) having the source worldlines as its boundary: for such a set of bonds,

J〈i,j〉 = −1. The Polyakov-loop correlation function is then given by

G(r) =
Z

spin,QQ̄(r, L)

Z
spin,QQ̄(0, L)

(3.4)

Our numerical algorithm (see also [14, 34, 36, 37] for further details) exploits this duality of

the model, simulating the Ising spin system, and measuring ratios of the partition functions

associated with different stacks of defects — which can be used to express the expectation

values of Polyakov loop pairs in the original gauge model.

The Z2 spin variables are stored with multi-spin coding implementation, and updated

by means of a microcanonical demon-update, in combination with a canonical update

of the demon [38]. In order to reduce the statistical errors, we use the snake-algorithm

method [39 – 41] furtherly improved by a hierarchical organisation of sublattice updates;

this results in an efficient algorithm which allows to reach a high degree of precision,

compared to direct numerical simulations in the standard setting of the theory (see, for

instance, [13]; see also [42] for a comparison of results from simulations in the direct setting

and in the dual setting).

A particularly useful advantage of numerical simulations in the dual setting is the fact

that this method overcomes the problem of exponential signal-to-noise ratio decay, which

is usually found when studying the interquark potential V (r) at larger and larger distances

(see also [43], where the technique was applied to compact QED).

4. Numerical results

We have performed a set of new simulations at β̃ = 0.236025, 0.24607 and 0.27604, where

the finite temperature phase transition occurs at L = 4, 3 and 2, respectively [44]. The

– 6 –
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correlation length at these values of β̃ is ξ = 1.456(3), 1.040(2), 0.644(1), respectively.

These estimates are obtained by inter- and extrapolation of Monte Carlo results for ξ

given in [45, 46] and the analysis of the low temperature series [47]. We should keep these

estimates in mind, since we can only expect to see a string spectrum described by some

effective string theory as long as En − E0 < m, where m is the lightest glueball mass (or

the inverse correlation length in the Ising spin model).

We have chosen these rather large values of β̃ mainly for technical reason. Since we

use a local update algorithm, the effort required for the simulation at a given statistical

accuracy grows like ξd+z ≈ ξ5. Hence for a given amount of CPU-time much more accurate

results can be obtained staying at a moderate correlation length.

A crucial question is to understand how much our results are affected by scaling correc-

tions. The basic assumption entering the Nambu-Goto string action is that the rotational

and translational symmetries of the continuum are restored. Leading scaling corrections

which are proportional to ξ−ω with ω = 0.821(5) [33] are not related with the breaking of

these symmetries. The breaking of the symmetries comes with a larger exponent ρ ≈ 2 [48].

Hence we might expect to see the proper string spectrum at values of β̃, where otherwise

scaling corrections are still large.

We have simulated lattices of the size 642 × L, 482 × L and 322 × L at β̃ = 0.236025,

0.24607 and 0.27604, respectively. In order to get a numerical result for G(r) in a range

0 ≤ r ≤ rmax we have computed, in contrast to our previous work, G(r + 1)/G(r) for all

0 ≤ r < rmax. Also the statistics, in particular for small values of L is considerably (i.e.

about a factor 10) larger than in our previous work.

In a first step, we analyse the ratio G(r + 1)/G(r) itself. To this end, we define an

effective string tension σeff(r, L) as the solution of

G(r + 1)

G(r)
=

ZQQ̄(r + 1, L)

ZQQ̄(r, L)
(4.1)

with respect to σeff, where G(r + 1)/G(r) is the numerical result of our simulation and

ZQQ̄(r, L) the theoretical prediction (2.7) with either the free string energy levels of eq. (2.2)

or those derived from the Nambu-Goto action, in eq. (2.5).

In figures 1, 2 and 3 we have plotted our results for β̃ = 0.236025, 0.24607 and 0.27604,

respectively.

Let us first have a closer look at figure 1, where we have plotted the effective string

tension σeff for β̃ = 0.236025. The upper figure shows the results from free field energy

levels of eq. (2.2) while the lower one uses the Nambu-Goto energy levels in eq. (2.5). In

the free field case we see quite a big spread of the curves for different values of L. On

the other hand, for the Nambu-Goto energy levels, the curves obtained for different L fall

nicely on top of each other. Starting from about r = 14 the results from all values of L are

compatible within error-bars. Also for smaller r the spread among different values of L is

much smaller than in the free field case.

Looking at the r-dependence of σeff for L = 80 the situation is quite different. Within

error bars, the σeff is constant starting from r = 11 in the free field case. On the other

hand, with the Nambu-Goto ansatz we still see deviations from the large r limit up to

– 7 –



J
H
E
P
0
1
(
2
0
0
6
)
0
7
6

5 10 15 20 25 30
r

0.0434

0.0436

0.0438

0.044

σ 
ef

f

String tension from G(r+1)/G(r), with the free-string ansatz
β=0.236025
~
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σ 
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String tension from G(r+1)/G(r), with the Nambu-Goto ansatz
β=0.236025
~

Figure 1: Effective string tension computed from G(r+1)/G(r) using eq. (2.7). For β̃ = 0.236025,

L = 80, 50, 40, 30, 28, 26, 24, 22, 20, 18, 16, 14. Upper plot: free field energy levels; lower plot:

Nambu-Goto energy levels.

r = 16. Averaging the σeff from the free field ansatz for L = 80 and r > 24 we get

σ = 0.0440244(15). To estimate possible systematic errors we compare this estimate with

the result from the Nambu-Goto ansatz (0.0440232(15)) and the corresponding results for

L = 50: σ = 0.0440196(19) and 0.0440201(19) using the free string and the Nambu-Goto

ansatz, respectively. As our final estimate, which is compatible with all the results given

above, we quote σ = 0.044023(3).

Looking at figures 2 and 3 we see that also for β̃ = 0.24607 and β̃ = 0.27604 the

curves for different L fall nicely on top of each other in the case of the Nambu-Goto ansatz,

while there is a clear spread in the case of the free field ansatz. Finally, we notice that the

r-dependence of σeff is quite different for β̃ = 0.27604 compared with β̃ = 0.24607 and β̃ =

0.236025, i.e. there are sizable scaling corrections. From L = 60 for β̃ = 0.24607 and L = 40

for β̃ = 0.27604 and large values of r we get σ = 0.082520(3) and σ = 0.20486(1) as our

– 8 –
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Figure 2: Effective string tension computed from G(r + 1)/G(r) using eq. (2.7) For β̃ = 0.24607,

L = 60, 30, 24, 22, 20, 18, 16, 14. Upper plot: free field energy levels; lower plot: Nambu-Goto energy

levels.

final estimate of the string tension at β̃ = 0.24607 and β̃ = 0.27604, respectively. The error

quoted should include systematic errors. We get for the dimensionless combination σξ2 =

0.0933(4), 0.0893(4) and 0.0850(3) for β̃ = 0.236025, 0.24607 and 0.27604, respectively.

The universal limit is given by lim
β̃→β̃c

σξ2 = 0.1056(19) [49].

Finally in figure 4 we show σeff obtained from G(29)/G(28) at β̃ = 0.236025. For this

particular value of r we have added smaller values of L: L = 8, 9, 10, 11, 12 and 13. In the

case of the Nambu-Goto energy-levels, σeff is almost constant down to L = 14, while for

the free field energy levels there is a clear L dependence in the same range of lattice sizes.

In figure 5 we have evaluated the effective string tension for β̃ = 0.226102 and L = 80.

The data are taken from table 3 of [15]. Our estimate of [14, 15] for the string tension is

σ = 0.010560(18) and ξ = 3.09(1) for the correlation length, i.e. σξ2 = 0.1008(7). Similar

to figure 1 for β̃ = 0.236025, we see for large L that the Nambu-Goto matches the data
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~

Figure 3: Effective string tension computed from G(r + 1)/G(r) using eq. (2.7) For β̃ = 0.27604,

L = 40, 30, 20, 16, 14, 12, 10, 8. Upper plot: free field energy levels; lower plot: Nambu-Goto energy

levels.

less good than the free string prediction. This fact had also been pointed out in [15].

We may summarize the results of this first part of our analysis in the following two

points:

• For all the values of β that we studied the L dependence of the interquark potential

is well described by the Nambu-Goto effective string down to rather small values of

L (of the order of twice the deconfinement length). In this respect the Nambu-Goto

string behaves much better than the simple free string model.

• String-related quantities (like the effective string corrections we are looking for) show

much smaller scaling deviations than bulk observables. For instance, for the three

values of β that we studied, due to the very small values of ξ the universal combination

σξ2 is still far from the continuum limit value, while in the same samples the L-
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Figure 4: Effective string tension computed from G(29)/G(28) using eq. (2.7) for β̃ = 0.236025.

For Nambu-Goto and free field string states.
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Figure 5: Effective string tension computed for L = 80 using eq. (2.7) for β̃ = 0.226102. For

Nambu-Goto and free field string states. Data taken from table 3 of [15].

dependence of the interquark potential is well described by the Nambu-Goto effective

string (see the collapse of curves in figures 1 to 3), independently of the value of ξ.

4.1 The ground state energy

The ground state energy can be easily determined since, for large L, it dominates the string

partition function:

Z
spin,QQ̄(r, L) ' e−LE0(r) for L large (4.2)
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In this limit, it is easy to make connection with the previous discussion:

G(r + 1)

G(r)
' e−L[E0(r+1)−E0(r)] for L large (4.3)

and, trivially

E0(r) =

r−1
∑

r̃=0

[E0(r̃ + 1) − E0(r̃)] (4.4)

Above we found for β̃ = 0.236025 and L = 80 (where eq. (4.2) holds within our numerical

precision for the whole range of r considered) that σeff (computed with the Nambu-Goto

or the free field ansatz) for r < 10 is clearly smaller than the asymptotic estimate of σ. It

follows that also E0(r+1)−E0(r) is clearly smaller than the Nambu-Goto and also the free

field prediction, using the asymptotic estimate of σ. On the other hand, σeff is constant

within error-bars for the free field ansatz for r > 10 and also for the Nambu-Goto ansatz

starting from r > 15 (where the difference of the Nambu-Goto and the free field theory

prediction is smaller than the error of our Monte Carlo data).

It follows directly from eq. (4.4) that, due to the contributions from r < 10, also for

large values of r, E0(r) deviates from the effective string prediction (at least) by a constant.

In figure 6 we have plotted E0 for β̃ = 0.236025 taken from the fit a.3 for Lmin = 20

discussed below. Note that E0 is quite insensitive to the particular form of the fit and the

value of Lmin. We give E0(r) − E0,prediction(r) − const. const is chosen such that E0(29) −
E0,prediction(29) − const = 0. For the theoretical prediction, we have taken σ = 0.044023

obtained above. For this value of σ we get const ≈ 0.16684, for both NG and free field

theory. For Nambu-Goto E0(r) − E0,NG(r) − const is clearly larger than 0 for r < 18. On

the other hand, for the free field prediction, E0(r) − E0,free(r) − const is slightly smaller

than 0 for 9 < r < 20, while it becomes positive for r ≤ 9. Here one should note that for

σ = 0.0440245 instead, E0(r) − E0,free(r) − const is consistent with zero for all r ≥ 10.

4.2 The excited levels

From the free theory as well as from the Nambu-Goto effective string, we expect that the

energy gaps En − E0 are decreasing functions of the interquark distance r; in particular,

for any r0 and n there exists an r such that En(r) − E0(r) < E1(r0) − E0(r0). For such a

choice of r0, r and n, we have:

G(r)/G(r0) = exp (−[E0(r) − E0(r0)]L)

∑∞
m=0 wm exp (−[Em(r) − E0(r)]L)

∑∞
p=0 wp exp (−[Ep(r0) − E0(r0)]L)

(4.5)

= exp (−[E0(r) − E0(r0)]L)

[

1 +

n
∑

m=1

wm exp (−[Em(r) − E0(r)]L) + . . .

]

that is, the nontrivial L-dependence of G(r)/G(r0) is dominated by the first n states at

the distance r, while the states at r0 play virtually no role. Hence, a good matching of

G(r̃ +1)/G(r̃) with the NG prediction for r̃ > r0 implies that also the first few energy gaps

at r have to follow the NG prediction, and vice versa.
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Figure 6: Ground state energy E0 for β̃ = 0.236025 taken from the fit a.3 for Lmin = 20 discussed

below. Note that E0 is quite insensitive to the particular form of the fit and the value of Lmin. The

solid line indicates zero, the dashed lines indicate the error of E0(29) which enters the constant that

has been subtracted. Note that the error in our estimate of the string tension σ = 0.044023(3) is

not indicated in the figure.

In the following, we determined the energy gaps from the correlation function G(r).

To this end, we performed a set of two- and three-parameter fits. Let us look at them in

detail:

• two-parameter fits:

a.1 “Two-state” ansatz

Z = e−E0L + e−E1L (4.6)

Here, the fit parameters are E0 and E1. This ansatz makes no use of the string-

theory.

a.2 “Free-string” ansatz

Z =
∞
∑

n=0

P (n)e−EnL (4.7)

with En = E0 + n∆, and P (n) is the number of partitions of n; in this case, the

fit parameters are E0 and ∆. Here we assume a string-spectrum as given by the

free bosonic string. However, we allow E0 and ∆ to be independent.

a.3 “Nambu-Goto” ansatz

Z =
∞
∑

n=0

P (n)e−EnL (4.8)

with En = E0 +∆n, and P (n) is the number of partitions of n. The energy-gaps

∆n are given by eq. 2.5, where we allow for some σ′, not related to the E0 in

the ansatz, i.e. the free parameters of the fit are E0 and σ′.
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• three-parameter fits with:

b.1 “Three-state” ansatz

Z = e−E0L + e−E1L + 2e−E2L (4.9)

The fitted parameters are E0, E1 and E2. Here, we have used the degeneracy

of the second excited state as theoretical input.

b.2 “Modified free-string” ansatz

Z =
∞
∑

n=0

P (n)e−EnL (4.10)

with: E0 = a, E1 = a + b, and En = a + b + (n − 1)c for n > 1. In this case,

the fitted parameters are a, b and c. As in the fit of type a.2 we assume the

linear rising of the energy levels typical of the free string, but allow the first

energy gap (the parameter b in the above equation) to behave independently of

the remaining energy gaps.

The purpose of this choice is to distinguish between the “Nambu-Goto” and the free

string behaviour.

In the following, we report the results for the sample at β̃ = 0.236025 which, according

to the findings discussed in the previous section should be essentially unaffected by scaling

violations as far as string-related quantities are concerned. In particular, we selected the

results of the fits at four values of the interquark distance: r = 4, 9, 19, 29. As mentioned

above, for this value of β̃ we run simulations corresponding to the following values of L:

L = 80, 50, 40, 30, 28, 26, 24, 22, 20, 18, 16, 14, 13, 12, 11, 10, 9, 8. In the fits, only the data

for Lmin ≥ 14 were included; then we studied the dependence of our results as Lmin was

increased. Obviously, as L is increased, the relative contribution of the ground state gets

larger and larger, and higher states in the spectrum become negligible.

In table 1, we report the reduced χ2 of the fits and in figures 7 to 10 the best fit values

for the lowest energy gap in the four cases.

Table 2 displays the number of excited states, which, according to our results at various

values of r, lie below the glueball mass threshold; note that at short distances the glueball

threshold is close to the lightest En states.

Some comments on these results are in order.

• We expect that at large distance the Nambu-Goto string should describe the in-

terquark potential well. This is indeed clearly visible if we look at the r = 29 entries

in table 1: the fits of type a.3 (Nambu-Goto) show small reduced χ2 values already

for Lmin = 14, while fits of type a.1 and a.2 display a bad behaviour until large values

of L are reached, where the ground state dominates and only the first excited state

gives further significant contributions. This is also clearly visible in figure 10 where

the results for the energy gap of fit a.3 coincide with the Nambu-Goto prediction

(the dashed line) already for Lmin = 14, while for the four other types of fit the data
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r/a Lmin/a fit type a.1 fit type a.2 fit type a.3 fit type b.1 fit type b.2

4 14 0.97 0.97 0.83

16 0.68 0.68

18 0.33 0.33 0.33

20 0.23 0.23

22 0.27 0.27

24 0.31 0.31

26 0.38 0.38

9 14 5.77 3.40 1.63 1.84 1.73

16 0.72 0.87 1.31 0.81

18 0.72 0.75 0.84

20 0.75 0.75 0.75

22 0.87 0.86

24 0.75 0.75

26 0.90 0.90

28 1.20

30 1.80

40 0.25

19 14 1.32 1.43

16 227.19 13.35 0.90 1.26 0.87

18 57.56 5.31 1.01 0.74

20 19.02 3.45 1.14 0.82

22 8.20 2.42 0.95

24 0.82 0.35

26 0.65 0.44

28 0.29

30 0.18

40 0.36

29 14 1.21 2.01

16 47.70 1.35 0.92

18 22.57 1.51 15.19

20 10.84 1.59 5.58

22 171.38 5.08 2.74

24 36.56 0.60 0.44

26 16.68 0.75

28 3.92

30 2.39

40 0.05

Table 1: Some details about the analysis of data at β̃ = 0.236025: the table shows the values of

χ2

red as a function of the minimum lattice size in the time-like direction, from the fits corresponding

to the various ansätze discussed in subsection 4.2, and at different values of r.

start for Lmin = 14 from values very far apart and smoothly converge toward the

Nambu-Goto limit as Lmin increases. Notice that the combination of these two pieces

of information (the reduced χ2 and the value of the E1−E0 gap as a function of Lmin)

tells us not only that the lowest gap agrees numerically with the NG expectation,

but also that the whole spectrum must be of the NG type. In particular one should

note that the difference between the NG behaviour (a.1 fit) and the free string one

(a.2 fit) can be clearly distinguished by our data.
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r/a # of states

4 1

9 3

14 4

19 5

24 6

29 7

Table 2: The number of excited En states (n ≥ 1) lighter than the glueball threshold, as a function

of the interquark distance (in lattice units); the table shows the results obtained from simulations

at β̃ = 0.236025.

• A similar pattern also occurs for r = 19, where, however, a systematic deviation

with respect to the NG expectation for the energy gap starts to be visible. The data

smoothly converge towards a value of the E1 − E0 gap which is slightly larger than

the NG expectation, though still very far from the free string one (solid line).

• For the two smallest values of r the picture is completely different. All the fits behave

equivalently well and the reduced χ2 cannot be used to distinguish among them. Also

the best fit values for the energy gap essentially coincide (this is particularly visible

in the r = 9 case where all the symbols in figure 8 lie on top of each other). This

indicates that in this case the data are not precise enough to detect higher states

in the spectrum and only E0 and E1 play a role in the fits. This is not surprising,

since, looking at eq. (2.5), we see that as r decreases the energy gaps become larger

and larger, making higher states negligible with respect to the two lowest ones. As

in the r = 19 case, we see a clear disagreement with respect to the NG expectation,

the observed energy gap being larger than expected.

This disagreement is better appreciated in figure 11, in which we plotted the relative

deviation of the first energy gap E1 − E0 with respect to the free string prediction, as a

function of the interquark distance. While the data are for all the values of r very far

from the free string expectation (solid line in the figure), they definitely disagree from the

NG expectation for low values of r, and then nicely converge toward it as r increases.

The data for low values of r perfectly agree with those reported in [22], where in fact a

disagreement with respect to the NG picture was claimed. We confirm this disagreement

at short distance, but being able to extend our analysis to larger values of r we can confirm

(in agreement with our previous observations [17]) that at large distances the NG picture,

both in the quantitative value of the energy gap E1 −E0 and in the general pattern of the

excited states, is fully restored.

Another interesting feature of figure 11 is that it confirms the observation we made

in the previous section, about the fact that string-related quantities (like the energy gap

E1 − E0) appear not to be strongly affected by scaling violations. In the figure we plot

the data obtained for the three values of β̃ we studied, and — except for small deviations

in the β̃ = 0.276040 case — the three samples nicely agree in the whole range of values of

r
√

σ.
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Figure 7: Comparison of the results for the first energy gap E1 − E0 obtained from different

ansätze, as a function of the minimum value of L, at β̃ = 0.236025 for r = 4.
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Figure 8: Same as in previous figure, but for r = 9.

5. Discussion and conclusions

The results of our analysis for the Z2 pure lattice gauge theory in D = 3, which is expected

to provide a prototypical model for quark confinement, show the following aspects.

1. A näıve description of the partition function associated with the confined QQ̄ sector

of the theory expressed purely in terms of the standard effective string picture is not

completely satisfactory, because the numerical results for the energy levels En(r) do
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Figure 9: Same as in previous figures, but for r = 19.
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Figure 10: Same as in previous figures, but for r = 29.

not agree with the corresponding theoretical spectrum, obtained by means of formal

canonical quantisation of the Nambu-Goto string.

2. However, the observation that the differences E0(r+1)−E0(r) are in agreement with

the free string predictions for intermediate and large distances r, suggests that the

deviations with respect to the string behaviour could be due to an overall shift in

the spectrum induced by extra terms, which are relevant at short length scales, but
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Figure 11: Relative deviation of the first energy gap E1 − E0, with respect to the free string

prediction, as a function of the interquark distance; results are shown for different values of β̃, and

are scaled in physical units. The format of this plot allows a direct comparison with figure 4 in [22].

negligible in the infrared limit.

3. Our numerical data confirm the Nambu-Goto string prediction for the energy gap

E1(r)−E0(r) for large interquark distances r. In particular, there is a large range in

r, where the precision of our numerical results allows to clearly distinguish between

the Nambu-Goto and the free string prediction and where we see a better agreement

with the Nambu-Goto string than with its free string approximation.

4. Our fits indicate that also gaps En(r) − E0(r) with n > 1 follow the Nambu-Goto

prediction for sufficiently large r. Unfortunately, our data do not allow to make more

quantitative statements on this issue.

Furthermore, we have discussed how the results on the spectrum that we have summarized

above are related with the behaviour of the ratio G(r+1)/G(r) of Polyakov loop correlation

functions that we have analysed in previous studies [13 – 17]: A matching of G(r +1)/G(r)

with the Nambu-Goto string prediction for large r implies that also the gaps En(r)−E0(r)

follow the Nambu-Goto string prediction.

It is interesting to compare these results with other studies that are available in the

literature; in particular, in [19 – 22] the excitation spectrum was described in terms of

the standard notation for the diatomic molecular physics, with states Γ labelled by the

component of the angular momentum of the gluon field along the interquark axis, and by

the CP eigenvalues. The numerical method they used to extract the lowest energy in the

various Γ sectors goes through evaluation of generalised Wilson loops, whose spatial edges

were replaced by well-suited combinations of paths, transforming according to the quantum

numbers of the considered Γ state. They focused their study on a regime of intermediate

distances, and the results show rather good agreement with the predictions of the adiabatic
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approximation of the bag picture [50], which provides a phenomenological model expected

to interpolate between the short and long length scales; at large distances, however, the

energies associated with the internal “gluonic” excitations of the stretched bag will become

irrelevant to the lowest spectrum states, and a convenient description for the flux-tube will

be given in terms of an effective string model. They also observe fine-structure deviations

with respect to the nπ
r

gaps expected from free-string model, that they compare with the

Nambu-Goto spectrum (leaving room for the possibility that further physical effects can

enter the effective string description in this regime).

In [23] a similar study was presented for the SU(2) gauge model in D = 3, concluding

that the energy gaps at finite lattice spacing appear to be well modeled by the Nambu-Goto

prediction, while the continuum extrapolation seems to favour the free string description.

As mentioned above, our results suggest instead that in the regime of intermediate to

long distances the Nambu-Goto model (rather than the free-string one) correctly describes

the spectrum of the theory, modulo an overall shift. As it concerns the interpretation of

this shift, it is interesting to note that our analysis in the present work shows that major

contributions to this effect come at distances smaller than the inverse of the mass of the

lightest glueball: therefore, the shift in the energy levels likely depends on the gauge model

which is considered and cannot be predicted in a pure string scenario. On the other hand,

the fact that the differences E0(r + 1) − E0(r) appear to be better described by the free

string than the Nambu-Goto one in a wide range of intermediate distances might be a

(model-independent) effect due to the Liouville mode; the latter appears in the derivation

of the Nambu-Goto effective model from the reparametrization invariant string theory in

the framework of covariant quantization, and, due to its intractability, it must be neglected

in the calculations yielding the effective string spectrum [31]. Neglecting the Liouville mode

is allowed only in the critical dimension (D = 26 for the Nambu-Goto string), in which it

decouples from the theory. In the present D = 3 case the field should not be neglected,

however one can argue that the effect of this approximation becomes less and less important

as the interquark distance increases2 — a scenario which indeed appears to be compatible

with our numerical results.

It would be very interesting to extend the present study to other models (especially to

different values of D, which gives the coupling of the Liouville mode) to see if the present

picture is confirmed, and to identify how the deviations from the Nambu-Goto effective

string depend on the gauge group and on the number of space-time dimensions.
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